Categories: Uncategorized

Causal Genetic Variants in Stillbirth

  • 1. Wapner RJ, Lewis D. Genetics and metabolic causes of stillbirth. Semin Perinatol 2002;26:7074.

  • 2. Stillbirth Collaborative Research Network Writing Group. Causes of death among stillbirths. JAMA 2011;306:24592468.

  • 3. Reddy UM, Page GP, Saade GR, et al. Karyotype versus microarray testing for genetic abnormalities after stillbirth. N Engl J Med 2012;367:21852193.

  • 4. Lee H, Deignan JL, Dorrani N, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 2014;312:18801887.

  • 5. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 2013;369:15021511.

  • 6. Groopman EE, Marasa M, Cameron-Christie S, et al. Diagnostic utility of exome sequencing for kidney disease. N Engl J Med 2019;380:142151.

  • 7. Splinter K, Adams DR, Bacino CA, et al. Effect of genetic diagnosis on patients with previously undiagnosed disease. N Engl J Med 2018;379:21312139.

  • 8. Bagnall RD, Crompton DE, Petrovski S, et al. Exome-based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Ann Neurol 2016;79:522534.

  • 9. Yang Y, Muzny DM, Xia F, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 2014;312:18701879.

  • 10. Neubauer J, Lecca MR, Russo G, et al. Post-mortem whole-exome analysis in a large sudden infant death syndrome cohort with a focus on cardiovascular and metabolic genetic diseases. Eur J Hum Genet 2017;25:404409.

  • 11. Lord J, McMullan DJ, Eberhardt RY, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet 2019;393:747757.

  • 12. Meng L, Pammi M, Saronwala A, et al. Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr 2017;171(12):e173438e173438.

  • 13. Petrovski S, Aggarwal V, Giordano JL, et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet 2019;393:758767.

  • 14. Wright CF, Fitzgerald TW, Jones WD, et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 2015;385:13051314.

  • 15. Shamseldin HE, Kurdi W, Almusafri F, et al. Molecular autopsy in maternal-fetal medicine. Genet Med 2018;20:420427.

  • 16. Sahlin E, Gréen A, Gustavsson P, et al. Identification of putative pathogenic single nucleotide variants (SNVs) in genes associated with heart disease in 290 cases of stillbirth. PLoS One 2019;14(1):e0210017e0210017.

  • 17. Dudley DJ, Goldenberg R, Conway D, et al. A new system for determining the causes of stillbirth. Obstet Gynecol 2010;116:254260.

  • 18. Analysis tool for annotated variants — a comprehensive platform for population-scale genomic analyses. 2016 (

  • 19. Epi4K Consortium, Epilepsy Phenome/Genome Project. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol 2017;16:135143.

  • 20. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405424.

  • 21. Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA. Online Mendelian Inheritance in Man (OMIM). Hum Mutat 2000;15:5761.

  • 22. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013;14:178192.

  • 23. Petrovski S, Todd JL, Durheim MT, et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am J Respir Crit Care Med 2017;196:8293.

  • 24. Zhu X, Padmanabhan R, Copeland B, et al. A case-control collapsing analysis identifies epilepsy genes implicated in trio sequencing studies focused on de novo mutations. PLoS Genet 2017;13(11):e1007104e1007104.

  • 25. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 2010;6(12):e1001025e1001025.

  • 26. Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 2013;9(8):e1003709e1003709.

  • 27. Samocha KE, Robinson EB, Sanders SJ, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet 2014;46:944950.

  • 28. Fuller ZL, Berg JJ, Mostafavi H, Sella G, Przeworski M. Measuring intolerance to mutation in human genetics. Nat Genet 2019;51:772776.

  • 29. Karczewski KJ, Francioli LC, Tiao G, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. January 30, 2019 ( preprint.

  • 30. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285291.

  • 31. Eilbeck K, Quinlan A, Yandell M. Settling the score: variant prioritization and Mendelian disease. Nat Rev Genet 2017;18:599612.

  • 32. Bartha I, di Iulio J, Venter JC, Telenti A. Human gene essentiality. Nat Rev Genet 2018;19:5162.

  • 33. Gelfman S, Dugger S, de Araujo Martins Moreno C, et al. A new approach for rare variation collapsing on functional protein domains implicates specific genic regions in ALS. Genome Res 2019;29:809818.

  • 34. Kosmicki JA, Samocha KE, Howrigan DP, et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet 2017;49:504510.

  • 35. Li H, Bloom JM, Farjoun Y, et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nat Methods 2018;15:595597.

  • 36. Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002;70:15551563.

  • 37. Mason-Suares H, Toledo D, Gekas J, et al. Juvenile myelomonocytic leukemia-associated variants are associated with neo-natal lethal Noonan syndrome. Eur J Hum Genet 2017;25:509511.

  • 38. Gil-Rodríguez MC, Deardorff MA, Ansari M, et al. De novo heterozygous mutations in SMC3 cause a range of Cornelia de Lange syndrome-overlapping phenotypes. Hum Mutat 2015;36:454462.

  • 39. Park ES, Putnam EA, Chitayat D, Child A, Milewicz DM. Clustering of FBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development. Am J Med Genet 1998;78:350355.

  • 40. Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 2014;42:D980D985.

  • 41. Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017;136:665677.

  • 42. Yates CL, Monaghan KG, Copenheaver D, et al. Whole-exome sequencing on deceased fetuses with ultrasound anomalies: expanding our knowledge of genetic disease during fetal development. Genet Med 2017;19:11711178.

  • 43. Zhu X, Petrovski S, Xie P, et al. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genet Med 2015;17:774781.

  • 44. Liu Z, Li W, Ma X, et al. Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J Biol Chem 2014;289:2980129816.

  • 45. Wu X, Kasper LH, Mantcheva RT, Mantchev GT, Springett MJ, van Deursen JM. Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function. Proc Natl Acad Sci U S A 2001;98:31913196.

  • 46. Kasak L, Rull K, Sõber S, Laan M. Copy number variation profile in the placental and parental genomes of recurrent pregnancy loss families. Sci Rep 2017;7:4532745327.

  • 47. Brownstein CA, Poduri A, Goldstein RD, Holm IA. The genetics of sudden infant death syndrome. In: Duncan JR, Byard RW, eds. SIDS sudden infant and early childhood death: the past, the present and the future. Adelaide, SA, Australia: University of Adelaide Press, 2018.

  • 48. Crotti L, Tester DJ, White WM, et al. Long QT syndrome-associated mutations in intrauterine fetal death. JAMA 2013;309:14731482.

  • 49. Narula N, Tester DJ, Paulmichl A, Maleszewski JJ, Ackerman MJ. Post-mortem whole exome sequencing with gene-specific analysis for autopsy-negative sudden unexplained death in the young: a case series. Pediatr Cardiol 2015;36:768778.

  • Source link


    Published by

    Recent Posts

    Environmental Factor – August 2017: Remembering children’s health champion Herbert Needleman

    Herbert Needleman, MD, a physician-scientist whose lead in consumer products was removed due to research…

    1 month ago

    Environmental Factor – August 2017: FARE awards recognize 17 NIEHS fellows for outstanding research

    ਸਤਾਰਾਂ ਐਨਆਈਈਐਚਐਸ ਫੈਲੋਜ਼ ਨੂੰ 199 ਨੈਸ਼ਨਲ ਇੰਸਟੀਚਿ ofਟ ਆਫ਼ ਹੈਲਥ (ਐਨਆਈਐਚ) ਦੇ ਖੋਜਕਰਤਾਵਾਂ ਵਿੱਚ ਖੋਜ…

    1 month ago

    Extramural Papers of the Month

    (ਹੋਰ ਪੜ੍ਹੋ) Source link

    1 month ago

    Environmental Factor – January 2021: Woychik shares leadership philosophy and goals

    In this inaugural director’s column, I would like to share with you what makes me…

    1 month ago

    Induction of Fetal Hemoglobin by Gene Therapy

    Shortly after birth, fetal hemoglobin is replaced by adult hemoglobin in red cells, a process…

    1 month ago

    Treatment by CRISPR-Cas9 Gene Editing — A Proof of Principle

    As a tool of great promise for the treatment of inherited human diseases, the clustered…

    1 month ago